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1 Introduction and Definitions

A dynamical system is a physical setting together with rules for how the setting changes or
evolves from one moment of time to the next or from one stage to the next. A basic goal of
the mathematical theory of dynamical systems is to determine or characterize the long term
behaviour of the system. The simplest model of a dynamical process supposes that (n+1)-
th state, zn+1 can be determined solely from a knowledge of the previous state zn, that is
zn+1 = f(zn) where f is a function. These systems are often called Discrete Dynamical
systems. We shall deal with one such kind of systems namely, Complex Dynamical Systems

In the study of Complex Dynamical Systems, the evolution of the system is realized by
iteration of entire or meromorphic complex functions f : C → Ĉ. For an initially chosen
point z0 ∈ C, the long term behavior of iterates {fn(z0)} is of primary importance. For
being more precise the following definition is required.

Definition 1.1. The family T of functions defined on the plane is said to be normal at
z ∈ C if every sequence extracted from T has a subsequence which converges uniformly
either to a bounded function or to ∞ on each compact subset of some neighbourhood of z.

In the present context, the family T is the sequence of iterates {fn}n>0.

A function f : C → Ĉ is said to be rational if it is of the form p(z)
q(z)

where both p(z)

and q(z) are complex polynomials not having any common factor. The degree of f(z) is
defined by max{degree p(z), degree q(z)}). Any other function on C which is not rational
is called transcendental.

By a function, it shall be meant to be a rational function of degree more than one or a
transcendental function through out the article.

The set where {fn} is normal, is widely known as Fatou set(or stable set) of f , denoted
by F(f). The complement of F(f) in the extended complex plane is known as Julia set. A
detailed description of Fatou set follows.

Fatou Components:
The Fatou set of a function is open by definition. A Fatou component is a maximal
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connected open subset of F(f). A component U of F(f) is n-periodic if n is the smallest
natural number to satisfy fn(U) ⊆ U . Then {U, f(U), f 2(U)...fn−1(U)} is called an n-
periodic cycle. If n = 1, U is called an invariant component. A Fatou component U is said
to be completely invariant if it is invariant and satisfies f−1(U) ⊆ U . A component U of
F(f) is said to be pre-periodic if there exists a natural number k > 1 such that fk(U) is
periodic.

For a given function f , certain points in C are very crucial in studying the components
of F(f). These are singular values and periodic points of f .

Definition 1.2. Singular Values: A point w is a critical point of f if f ′(w) = 0. The
value of the function at w, z = f(w) is called critical value of f . A point a is called an
asymptotic value of f if there exists a path γ(t)(a continuous function from (0,∞) to Ĉ)
satisfying limt→∞ f(γ(t)) = a. All the critical and asymptotic values of a function are
known as singular values. The set of all singular values of a function f is denoted by Sf .

Definition 1.3. Periodic point: A point z ∈ C is called a p-periodic point of f if p is
the smallest natural number satisfying fp(z) = z. If p = 1, z is called a fixed point. A
periodic point z is said to be attracting, indifferent or repelling if |(fp)′(z)| < 1, = 1or > 1
respectively. Further, an indifferent periodic point is called irrationally indifferent if t
is irrational in the expression (fp)′(z) = ei2πt. The periodic point is called rationally
indifferent if t is rational.

A complete classification of periodic Fatou components was made by D.Sullivan [4]for
rational functions[1]. His classification holds for transcendental functions with slight mod-
ifications.
Suppose U is an n-periodic Fatou component. Then exactly one of the following possibili-
ties occur.

1. Attracting Basin: If for all the points z in U , limk→∞ fkn(z) = p where p is an
attracting n-periodic point lying in U , the component U is said to be an attracting
basin.

2. Parabolic Basin: In this case ∂U (the boundary of U) contains a rationally indifferent
n-periodic point p. Further limk→∞ fkn(z) = p for all z ∈ U .

3. Baker Domains : If for z ∈ U , limk→∞ fkn(z) = ∞ then the Fatou component U is
called a Baker domain.

4. Herman Rings : If there exists an analytic homeomorphism φ : U → A, A is the
annulus {z : 1 < |z| < r}, r > 1, such that φ(fk(φ−1(z))) = ei2παz for some α ∈ R\Q,
then U is called as Herman ring.

5. Siegel Disc: A Fatou component U is said to be a siegel disc if there exists an analytic
homeomorphism φ : U → D such that φ(fk(φ−1(z))) = ei2παz for some α ∈ R\Q.
Here D is the unit disc. As definition implies Siegel discs are simply connected.



The existence of Siegel discs were established by C.L.Siegel in 1941 [2, 3]. The bahavior
of {fn}n>0 on Siegel discs is different in many significant ways than on other kind of
components. Some of these aspects are presented in the article. Also non existence of
Siegel discs under some condition is dealt with.

The forward orbit of all the singular values of f , defined by {fn(z) : z ∈ Sf and n ∈ N}
is related to the Siegel discs as stated in the following theorem which appears in [5].

Theorem 1.1. Suppose f is a function and C = {U0, U1, U2...Up−1} is periodic cycle of

siegel discs or Herman rings, then Uj ⊂ O+(Sf ), the closure of the forward orbit of all the
singular values.

For the sake of simplicity, only invariant Siegel discs are considered in this article
though the deliberations holds good for periodic cycle of Siegel discs as well. Through out
the article the unit disc {z ∈ C : |z| < 1} is denoted by D and S stands for an invariant
Siegel disc.

2 Results

By definition, f(z) = φ−1(ρ(φ(z))), z ∈ S where ρ(z) = ei2παz, α ∈ R\Q. All the functions
in the right hand side are one-one, so f is one-one. This fact supports the proofs of vari-
ous results. The following proposition guarantees the existence of pre-periodic components.

Proposition 2.1. Suppose the Fatou set of f , F(f) contains a Siegel disc. Then there are
pre-periodic components in F(f).

Proof. Given any point z ∈ S, there are more than one point whose f -image is z. This
follows from Picard’s theorem for transcendental functions and quite obvious for rational
functions of degree more than one. As f is one-one on S, any point z ∈ S has only one
pre-image in S. The other pre-images must lie in Fatou components other than S. These
components are different from S. If U is such a component, then f(U) = S which is
invariant (one-periodic). So U is pre-periodic.

Remark 2.1. A Siegel disc S does not satisfy f−1(S) ⊆ S. So these are not completely
invariant.

Remark 2.2. For transcendental functions, F(f) may contain infinitely many pre-periodic
components. This follows from Picard’s theorem which states that every point in Ĉ, except
at most two has infinitely many pre-images under f .

It is clear from the classification of Fatou components that attracting and rationally
indifferent periodic points are associated with attracting and parabolic basins respectively.
Also it is known that repelling periodic points are in the Julia set[5]. The next proposition
finds the association of irrationally indifferent periodic points with Siegel discs.



Proposition 2.2. An invariant Siegel disc S contains an irrationally indifferent fixed point
of f .

Proof. From definition, it follows that f(φ−1(z)) = φ−1(ρ(z)) on D where φ : S → D is the
analytic homeomorphism and ρ(z) is an irrational rotation on D. The origin is fixed by ρ,
so f(φ−1(0)) = φ−1(0). That means φ−1(0) is a fixed point of f in S. Being in the Fatou
set, this fixed point is either attracting or neutral. Again if it is attracting or rationally
indifferent, it must correspond to an attracting basin or a parabolic basin which is not the
case. Therefore, the fixed point is irrationally indifferent.

The previous proposition says that there is a point z∗ ∈ S that remains fixed by f .
In other words, f(z∗) = z∗. There are also other invariant subsets of S. Precisely, S is a
disjoint union of all such invariant subsets. This is the content of the next theorem.

Suppose Cs is a circle of radius s centered at origin where 0 ≤ s < 1. Denote C∗
s by

φ−1(Cs) where φ is the analytic homeomorphism that exists from S onto the unit disc D
by definition of Siegel discs. Here C0 and C∗

0 are assumed to be 0 and the irrationally
indifferent fixed point in S respectively.

Theorem 2.1. If S is an invariant Siegel disc of f , then S =
⋃

0≤s<1 C∗
s where each C∗

s

is invariant and C∗
s

⋂
C∗

t = ∅ for s, t ∈ [0 , 1) and s �= t.

Proof. For any s ∈ [0 , 1), C∗
s ⊂ S. So

⋃
0≤s<1 C∗

s ⊆ S. Let w ∈ S, then |φ(w)| < 1 by
definition of φ. Denote the circle having radius |φ(w)| and centered at origin by C|φ(w)|.
Now φ−1(C|φ(w)|) is nothing but C∗

|φ(w)| which contains w. This implies S ⊆ ⋃
0≤s<1 C∗

s and

S =
⋃

0≤s<1 C∗
s follows.

To show that each C∗
s is invariant, let z ∈ C∗

s = φ−1(Cs). From the definition of Siegel disc,
it follows that f = φ−1ρφ on S. Now, φ(z) ∈ Cs and Cs is preserved by ρ. So f(z) ∈ C∗

s .
Therefore, C∗

s is invariant.
We get C∗

s

⋂
C∗

t = ∅ as a consequence of Cs

⋂
Ct = ∅ and one-one ness of φ.

Corollary 2.1. All the limit functions of {fn} on S are non constant.

Proof. Suppose there is a subsequence {fnk
} of {fn} that converges uniformly on each

compact subset of S to a constant c. Let C∗
s is an invariant curve in S (as in the previous

theorem) such that c /∈ C∗
s . Now for all nk and z ∈ C∗

s , fnk
(z) ∈ C∗

s . Thus a neighbourhood
around c can be found which does not contain any fnk

(z). So fnk
(z) can not converge to

c on C∗
s ; a contradiction. Therefore, any limit function of {fn} is non constant.

This corollary stands in direct contrast with attracting or parabolic Fatou components
where all the limit functions of {fn}n>0 are constants.

The next result characterize certain functions which do not have Siegel discs in their
Fatou set.

Theorem 2.2. Suppose for a function f : C → Ĉ, the forward orbit of singular values
O+(Sf ) ⊆ γ where γ is bounded but not a closed curve in C. Then F(f) do not contain
any Siegel Disc.



Proof. Suppose S is an invariant Siegel disc of F(f). By the Theorem 1.1, ∂S ⊂ O+(Sf ).

The boundary of S must be a simple closed curve in Ĉ. But O+(Sf ) is given to be a subset
of γ which is bounded. So ∂S must be a simple closed curve in C which is no longer true
as ∂S ⊂ O+(Sf ) ⊆ γ and γ is not closed. Thus arises a contradiction implying that no
Siegel disc can exist.

The function λtanh(ez) for non zero real λ has three singular values namely, λ,−λ and
0. The forward orbit of all these values is a subset of R and remains bounded. So no Siegel
disc exists in F(λtanh(ez)). The rational function z2 is another example where the only
singular value 0 is a fixed point, so have bounded forward orbit.
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