Chimera states in two interacting populations of nonlocally coupled
Stuart-Landau oscillators

K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, M. Lakshmanan *

Chimera states are intriguing spatiotemporal patterns co-
existing with synchronized and desynchronized oscillations
and it has brought out considerable attention towards the
study of coupled networks with nonlocal topology. Such a
remarkable phenomenon was initially found in nonlocally
coupled identical oscillators [1]-[2]. Another interesting
pattern, that is imperfect chimera state has also been re-
ported with coupled pendula and this state is characterized
by a certain small number of solitary oscillators (solitary
state) which escape from the synchronized chimera’s clus-
ter (where solitary oscillator represents a single repulsive
oscillator splitting up from the fully synchronized group).
Such escaped oscillators oscillate with different average
frequencies [3]. A novel mechanism for the creation of
chimera states via the appearance of the solitary states is
also reported in Kuramoto model with inertia and with time
delayed feedback oscillators.

In this talk, we discuss different kinds of imperfect
synchronized states and chimera states (for spatially pre-
pared initial conditions) in two interacting populations of
nonlocally coupled oscillators. The imperfect synchronized
state is characterized by certain small number of solitary os-
cillators exhibiting quasi-periodic oscillations which escape
from the synchronized group.

Figure 1: (Color online) Space-time plots of the vari-
able $x_j^{(1,2)}$ for mixed imperfect synchronized state (a)
for population-I and (b) for population-II. Corresponding
oscillator average frequencies of (c) population-I and (d)
population-II. Parameter values: $c = 5$, $\sigma = 0.1$, $\eta = 0.25$,
$\omega = 1.0$ and $r = 0.1$.

Taking into account the above facts, we discuss the dy-
namics of nonlocally coupled two interacting populations of
Stuart-Landau oscillators. We analyze how does the
nonisochronicity parameter (c) affect the emergence of dif-
ferent kinds of imperfect synchronized states and chimera
states in such a system with nonlocal coupling. We find that
for given strengths of inter- and intra-population couplings
the emergence of imperfect synchronized states for suf-
ficiently smaller values of nonisochronicity parameter (c)
which means that the synchronized and escaped oscillators
from synchronized state exist within population-II while
the population-I remains synchronized. By increasing the
strength of this parameter, we find that the synchronized
oscillators from both the populations get locked to a com-
mon average frequency while the solitary oscillators are
distributed with random average frequencies and we term
such a state as a mixed imperfect synchronized state and is
demonstrated with space-time plots in Figs. 1(a,b) and av-
gerage frequency profiles of the oscillators in Figs. 1(c,d). In
addition, synchronized oscillators exhibit periodic motion
around the origin, whereas the desynchronized oscillators
exclude quasi-periodic motion but their center of rotation
is shifted from the origin. In this region, for spatially
prepared initial conditions, we can observe the coexistence
of synchronized and desynchronized oscillations in both
the populations, namely mixed chimera states, which is
distinct from the results discussed in Ref. [4] where the
chimera state represents the complete synchronization in
one population while desynchronization occurs among the
oscillators in the other population under global coupling.
We also observe that the imperfect synchronized states can
drift with time by increasing the parameter c. We also
find that these states are robust against an introduction of
frequency mismatch between the natural frequencies of
the population with significant values of nonisochronicity
parameter.

Full paper published in K. Premalatha, V. K. Chand-
E 94, 012311 (2016).

References